Manual for
Furlex 200 TD & 300 TD
1 Introduction

1.1 The manual

☐ To derive the maximum benefit and enjoyment from your Furlex system, we recommend that you study this manual carefully.

☐ The manual is divided into two sections, one dealing with ASSEMBLY and one with OPERATION. Each section contains references to the other.
 It is very important to read and note these cross references.

☐ All Safety related information is indicated by the following symbol:

☐ The manual covers two different Furlex sizes, 200 TD and 300 TD. The model designation can be found on through-deck fitting.

☐ Furlex is specified and manufactured using Metric dimensions. To assist owners unfamiliar with this system, the approximate equivalent Imperial dimensions are given in brackets.

☐ The screws used for the halyard swivel and lower bearing assembly have a Torx socket. The Torx type socket has an excellent grip but is not yet in common use. The necessary torx bits are included with the Furlex. The Torx socket sizes are:

<table>
<thead>
<tr>
<th>Screw Size</th>
<th>Torx Socket</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5</td>
<td>T 25</td>
</tr>
<tr>
<td>M6</td>
<td>T 30</td>
</tr>
<tr>
<td>M8</td>
<td>T 40</td>
</tr>
</tbody>
</table>

This information must be followed to avoid damage to the system and the risk of personal injury. The 2-year guarantee on the Furlex system is only valid if the system is assembled and operated correctly according to the manual.

PLEASE read the entire manual prior to assembly!

Seldén Mast AB guarantees the Furlex system for 2 years. The guarantee covers faults arising from defective design, materials or workmanship.

The guarantee is only valid if the Furlex system is assembled, operated and maintained in accordance with this manual and is not subjected to loads in excess of those indicated in the brochure and instructions.

Complete shipment and warranty conditions are to be found on Seldén’s website www.seldenmast.com. See Resources/Partners information/General information/General conditions of sale (595-546-E).

If the system is repaired by anyone other than Seldén Mast AB or one of our authorized dealers, the guarantee ceases to be valid.

Seldén Mast AB reserves the right to alter the content and design without prior warning.
Contents

1 Introduction
1.1 The manual 2
1.2 Product information 4

ASSEMBLY
2 Checklist
2.1 Furlex box 6
2.2 Foil pack 8
2.3 Tools 8
2.4 Hole in deck the for Furlex 8

3 Assembly preparations
3.1 Forestay attachment - guiding principle 9
3.2 Mast attachment 9
3.2.1 Dimensions of top eye terminal 9
3.2.2 Table of measurements for toggles 10
3.3 Deck attachment 11
3.4 Assembly below deck 12
3.4.1 Lower bearing assembly 12
3.4.2 Dimensions for installation 12
3.5 Location of deck hole 13
3.5.1 Calculation of intersection point 13
3.5.2 Mast not stepped 14
3.5.3 Stepped mast with existing forestay fitting 14
3.6 Calculating the length of the forestay wire 15
3.6.1 Table 1: Calculation of forestay wire length 15
3.7 Calculating the length of the luff extrusion 16
3.7.1 Table 2: Calculation of luff extrusion length 16

4 Assembly of the Furlex system
4.1 Making through-deck hole and assembly 18
4.2 Assembly of lower bearing assembly 19
4.3 Assembly the line drum and line guide 20
4.4 Assembly of the luff section 22
4.5 Fitting the wire 24
4.5.1 Guiding values for wire protrusion 24

5 Halyard routing
5.1 Halyard leads 27
5.2 Halyard sheave box 28
5.2.1 Sheave boxes 28
5.3 Spinnaker halyard 28
5.4 Fitting the halyard lead 28

6 Furling line arrangement
6.1 Functional description 30
6.2 Winding the line onto the drum 30
6.3 Routing of the furling line 31
6.4 200 TD: Fitting the stanchion blocks 32
6.5 300 TD: Fitting the stanchion blocks 32

7 The Sail
7.1 Adapting the sail to the Furlex system 33
7.1.1 Table of sail measurements 34
7.2 Sail shape 34
7.3 Determining the length of the pendant 35

OPERATING MANUAL
10 Halyard routing
10.1 Summary 37
10.2 Halyard sheave box 38
10.3 Spinnaker halyard 38

11 Sailing with Furlex
11.1 To hoist the sail 39
11.2 Unfurling the sail 40
11.3 Furling the sail 41

12 Reefing
12.1 Free turn 42
12.2 Reefing under sail 42
12.3 Setting a reefed sail from the furled position 42
12.4 Adjusting the sheeting position 43

13 Furlex for racing 44

14 Adjusting the forestay length
14.1 To make the forestay longer 45
14.2 To make the forestay shorter 45

15 Maintenance of the Furlex system
15.1 Lubricating the lower bearing assembly 46
15.2 Lubricating the halyard swivel 46
15.3 Cleaning the Furlex 47
15.4 Storage 47

16 Rigging
16.1 Fitting the Furlex on a stepped mast 48
16.2 Stepping the mast with Furlex fitted 49

17 Dismantling
17.1 Halyard swivel 49
17.2 Sail feeder 49
17.3 Lineguide 50
17.4 Line drum 51
17.5 Lower bearing assembly 52
17.6 Wire terminal 52

18 Trouble shooting 54

19 Checklist
19.1 Points to check before sailing 56
1.2 Product information

When the original Furlex was introduced in 1983, it was not a pioneering project. The design included features which improved on other manufacturers’ products to increase performance, function and reliability. The first systems sold are still functioning well, providing ample proof of the design’s effectiveness and long-term staying power. Furlex quickly became the market leader, a position it still occupies today. Our success can also be put down to how we select a system for a specific yacht. First we calculate the boat’s righting moment, which is a function of its displacement, ballast, beam and draft. Then we use righting moment in combination with the rig type to calculate its power when sailing, and the likely loads on the Furlex system.

Furlex is only sold through authorized local dealers who are able to cover all service requirements for the customer, including assistance with assembly, the modification of sails or the production of new sails.

This new Furlex model, designed for furling drum below deck, incorporates improvements based on our extensive experience and represents the very latest development of the jib furling and reefing concept.

- Furlex is supplied as a complete assembly kit containing all the components required.
- Furlex TD can be separated at the connection between the lower bearing assembly and forestay/luff extrusion.
- The lower bearing assembly with line drum etc can be left fitted to the boat also when the forestay/luff section is removed.
- Furlex TD incorporates an integral screw for fine adjustment of the under deck dimension. This simplifies adjustment if the Furlex is switched to another boat.
- The ball-bearing system of the halyard swivel features a load distribution facility, a unique patented system which distributes loads over the entire ball race. This promotes smoother furling and considerably reduces bearing wear.
- The tack ring’s "free turn" flattens out the sail, promoting an efficient shape when reefed.
- Furlex is suited to both cruising and racing. As the line drum and the line guard are fitted below deck, the maximum length of the forestay can be utilized.
- The luff section has two luff grooves, allowing two jibs to be goose-winged when running downwind and facilitating fast sail changes for racing yachtsmen.
- The aluminium extrusion is insulated from the forestay over its whole length. The extrusion joining sleeves are also insulated internally to prevent wear and corrosion.
- The line guide fitting centres the line as it is wound onto the drum, and the flexible internal line guard maintains light pressure on the line to ensure even distribution on the drum.
- Furlex is manufactured by Seldén Mast, the world’s leading manufacturer of masts and rigging systems. We hope that you enjoy sailing with your Furlex.

⚠️ Follow the instructions carefully when fitting.
1. Forestay /eye terminal
2. Top guard
3. Halyard swivel
4. Snap shackle
5. Luff extrusion
6. Distance tube
7. Joining sleeve
8. Long joining sleeve
9. Sail feeder
10. Sail feeder connector
11. Lower bearing assembly
12. Tackring
13. Adjustment screw (fork)
14. Line drum half
15. Line guard housing
16. Line guard
17. Line guard bracket
18. Line guide fitting
19. Locking block
20. Through-deck fitting
21. Adapter tube and adapter
22. Bushes
ASSEMBLY

2 Checklist

2.1 Furlex box

- Forestay wire with top bearing
- Eye terminal with toggle
- Halyard swivel with snap shackle
- Lower bearing assembly with snap shackle
- Through-deck fitting with cutout jig for deck hole.
- Adapter tube with adapter and luff section screw
- Two line drum halves (one with furling line end lock)
- Line guide fitting
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Line guard housing</td>
<td></td>
</tr>
<tr>
<td>☐ Line guide locking block</td>
<td></td>
</tr>
<tr>
<td>☐ Furling line</td>
<td></td>
</tr>
<tr>
<td>☐ 200 TD:</td>
<td>2 halyard leads 508-159 with insulator sheets incl. 4 screws</td>
</tr>
<tr>
<td>☐ Drill bit Ø 5.3 mm (7/32")</td>
<td>300 TD:</td>
</tr>
<tr>
<td>200 TD:</td>
<td>Drill bit Ø 5.3 mm (7/32")</td>
</tr>
<tr>
<td>☐ Torx bit set (T15/20/25/30/40/45)</td>
<td></td>
</tr>
<tr>
<td>☐ 200 TD:</td>
<td>4 stanchion blocks 538-971-02</td>
</tr>
<tr>
<td>300 TD:</td>
<td>4 stanchion blocks 538-210-01</td>
</tr>
<tr>
<td>☐ 300 TD:</td>
<td>+ 1x 538-971-01</td>
</tr>
<tr>
<td>☐ Prefeeder</td>
<td></td>
</tr>
<tr>
<td>☐ Locking adhesive</td>
<td></td>
</tr>
<tr>
<td>☐ Lubricating grease</td>
<td></td>
</tr>
<tr>
<td>☐ Top guard incl. 2 screws</td>
<td></td>
</tr>
<tr>
<td>☐ Manuals</td>
<td></td>
</tr>
<tr>
<td>☐ Spare parts list</td>
<td></td>
</tr>
<tr>
<td>☐ Certificate of guarantee</td>
<td></td>
</tr>
</tbody>
</table>
2.2 Foil pack

- 200 TD: One 800 mm (31 ½”) luff extrusion with long joining sleeve
- 300 TD: One 770 mm (30 5/16”) luff extrusion with long joining sleeve
- One 2000 mm (78 3/4”) luff extrusion with distance tube.
- 2400 mm (94 1/2”) luff extrusions with distance tube + joining sleeve (number dependent on length ordered.)
- Sail feeder (sail feeder + sailfeeder connector.)
- One short connecting plate for each 2400 mm (94 1/2”) luff extrusion
- One long connecting plate (for sail feeder)
- One locking pin for 800 mm (31 ½”) /770 mm (30 5/16”)

2.3 Tools

Tools needed for assembly:
- Screwdriver (standard tip)
- Screwdriver for 1/4” bits
- Hacksaw
- 2 adjustable spanners
- Pair of pliers (“Polygrip”)
- Adhesive tape
- File
- Marker pen (water-proof)
- Torx bits (included in Furlex package)
- Steel measuring tape (20 m) (60’7”)
- Knife

For halyard leads:
- Heavy-duty Philips screwdriver
- Drill
- Drill bit Ø 5.3 mm (7/32”) (included in package)

2.4 Tools needed for making the hole in the deck for the Furlex:

Hole saw (see table) alt. jig saw
Drill bit (see table)

<table>
<thead>
<tr>
<th>Furlex Serie</th>
<th>Holesaw diam.</th>
<th>Drill bit diam.</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 TD</td>
<td>Ø 89 (3 ½”)</td>
<td>Ø 9 (3/8”)</td>
</tr>
<tr>
<td>300 TD</td>
<td>Ø 102 (4”)</td>
<td>Ø 9 (3/8”)</td>
</tr>
</tbody>
</table>
3 ASSEMBLY PREPARATIONS

3.1 Forestay attachment - guiding principle

The guiding principle is that the forestay connections should allow sufficient articulation in all directions. In most cases a toggle should be fitted between the Furlex stay and the forestay attachments.

3.2 Mast attachment

Some Seldén forestay attachment options are shown below, illustrating the rules and exceptions.

For H dimensions, see Table 3.2.2.

Fig. 3.2.a

Forestay attachment on masthead rigs: Always connect the stay with a toggle to give full articulation.

Fig. 3.2.b

Forestay attachment on fractional rigs, Seldén type: 505-018 ø 6 & 7 mm wire: Connect with an eye/fork-toggle.

505-020 ø 8 & 10 mm wire: Connect to existing toggle. Double combi Ø 6-8.

Fig. 3.2.c

Forestay attachment, Seldén type: O-35 (517-905) & O-50 (517-911) Connect directly to fitting.

Fig. 3.2.d

Forestay attachment "T-terminal" type: Fit a T/fork toggle according to the table 3.2.2.

3.2.1 Dimensions of top eye terminal

<table>
<thead>
<tr>
<th>Furlex Serie</th>
<th>Wire Dim.</th>
<th>TED</th>
<th>TET</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 TD</td>
<td>Ø 6 (1/4")</td>
<td>12.2 (1/2")</td>
<td>6 (1/4")</td>
</tr>
<tr>
<td></td>
<td>Ø 7 (9/32")</td>
<td>13.5 (9/16")</td>
<td>7 (9/32")</td>
</tr>
<tr>
<td></td>
<td>Ø 8 (5/16")</td>
<td>16.5 (5/8")</td>
<td>10 (3/8")</td>
</tr>
<tr>
<td>300 TD</td>
<td>Ø 8 (5/16")</td>
<td>16.5 (5/8")</td>
<td>10 (3/8")</td>
</tr>
<tr>
<td></td>
<td>Ø 10 (3/8")</td>
<td>16.5 (5/8")</td>
<td>10 (3/8")</td>
</tr>
</tbody>
</table>

Fig. 3.2.e

1) Terminal Eye Diameter
2) Terminal Eye Thickness
3.2.2 Dimensions for toggles and extension links

(Toggles available from your Furlex dealer)

<table>
<thead>
<tr>
<th>Toggle type</th>
<th>Forestay Dimensions</th>
<th>Ø 6 (1/4")</th>
<th>Ø 7 (9/32")</th>
<th>Ø 8 (5/16")</th>
<th>Ø 10 (3/8")</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye/fork toggle</td>
<td>Article no.</td>
<td>174-104</td>
<td>174-105</td>
<td>174-106</td>
<td>174-107</td>
</tr>
<tr>
<td></td>
<td>Length (H)</td>
<td>40 (1 1/2")</td>
<td>45 (1 3/4")</td>
<td>50 (2")</td>
<td>65 (2 1/2")</td>
</tr>
<tr>
<td></td>
<td>Ø Eye (D1)</td>
<td>11 (7/16")</td>
<td>13 (1 1/2")</td>
<td>16 (5/8")</td>
<td>16 (5/8")</td>
</tr>
<tr>
<td></td>
<td>Ø Clevis pin (D2)</td>
<td>11 (7/16")</td>
<td>13 (1 1/2")</td>
<td>15.8 (5/8")</td>
<td>15.8 (5/8")</td>
</tr>
<tr>
<td></td>
<td>Fork width (W2)</td>
<td>12 (1/2")</td>
<td>12 (1/2")</td>
<td>12 (1/2")</td>
<td>20 (3/4")</td>
</tr>
<tr>
<td>Fork/Fork toggle</td>
<td>Article no.</td>
<td>517-046-02</td>
<td>517-047-02</td>
<td>517-048-02</td>
<td>517-060-02</td>
</tr>
<tr>
<td></td>
<td>Length (H)</td>
<td>40 (1 1/2")</td>
<td>40 (1 1/2")</td>
<td>50 (2")</td>
<td>55 (2 3/16")</td>
</tr>
<tr>
<td></td>
<td>Ø Clevis pin (D1)</td>
<td>12 (1/2")</td>
<td>12 (1/2")</td>
<td>14 (9/16")</td>
<td>16 (5/8")</td>
</tr>
<tr>
<td></td>
<td>Fork width (W1)</td>
<td>11 (7/16")</td>
<td>11 (7/16")</td>
<td>14 (9/16")</td>
<td>14 (9/16")</td>
</tr>
<tr>
<td></td>
<td>Ø Clevis pin (D2)</td>
<td>10 (3/8")</td>
<td>12 (1/2")</td>
<td>14 (9/16")</td>
<td>16 (5/8")</td>
</tr>
<tr>
<td></td>
<td>Gaffelbredd (W2)</td>
<td>11 (7/16")</td>
<td>12.5 (1/2")</td>
<td>15.5 (5/8")</td>
<td>16 (5/8")</td>
</tr>
<tr>
<td>T / fork-toggle</td>
<td>Article no.</td>
<td>174-122</td>
<td>174-123</td>
<td>174-124</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Length (H)</td>
<td>80 (3 1/4")</td>
<td>90 (3 9/16")</td>
<td>100 (4")</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ø Clevis pin (D2)</td>
<td>11 (7/16")</td>
<td>13 (1/2")</td>
<td>15.8 (5/8")</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fork width (W2)</td>
<td>12 (1/2")</td>
<td>14 (9/16")</td>
<td>16 (5/8")</td>
<td>-</td>
</tr>
<tr>
<td>Stemball / Eye toggle with fork/fork-toggle.</td>
<td>Article no.</td>
<td>517-066-01</td>
<td>517-067-01</td>
<td>517-097-01</td>
<td>517-068-01</td>
</tr>
<tr>
<td></td>
<td>Length (H)</td>
<td>152 (6")</td>
<td>157 (6 1/4")</td>
<td>153 (6")</td>
<td>197 (7 3/4")</td>
</tr>
<tr>
<td></td>
<td>Ø Stemball (D1)</td>
<td>26 (1 1/32")</td>
<td>34 (1 11/32")</td>
<td>34 (1 11/32")</td>
<td>34 (1 11/32")</td>
</tr>
<tr>
<td></td>
<td>Height (HB)</td>
<td>8 (5/16")</td>
<td>9 (3/8")</td>
<td>11 (7/16")</td>
<td>9 (3/8")</td>
</tr>
<tr>
<td></td>
<td>Radius (R)</td>
<td>10 (3/8")</td>
<td>15 (9/16")</td>
<td>13 (1/2")</td>
<td>15 (9/16")</td>
</tr>
<tr>
<td></td>
<td>Ø Clevis pin (D2)</td>
<td>10 (3/8")</td>
<td>12 (1/2")</td>
<td>12 (1/2")</td>
<td>16 (5/8")</td>
</tr>
<tr>
<td></td>
<td>Fork width (W2)</td>
<td>11 (7/16")</td>
<td>12.5 (1/2")</td>
<td>12.5 (1/2")</td>
<td>15.5 (5/8")</td>
</tr>
<tr>
<td>Eye/fork Extensionlink</td>
<td>Article no.</td>
<td>517-063-01</td>
<td>517-063-01</td>
<td>517-062-01</td>
<td>517-062-01</td>
</tr>
<tr>
<td></td>
<td>Length (H)</td>
<td>90 (3 9/16")</td>
<td>90 (3 9/16")</td>
<td>130 (5")</td>
<td>130 (5")</td>
</tr>
<tr>
<td></td>
<td>Ø Clevis pin (D1)</td>
<td>12 (1/2")</td>
<td>12 (1/2")</td>
<td>16 (5/8")</td>
<td>16 (5/8")</td>
</tr>
<tr>
<td></td>
<td>Fork width (W1)</td>
<td>11 (7/16")</td>
<td>11 (7/16")</td>
<td>14 (9/16")</td>
<td>14 (9/16")</td>
</tr>
<tr>
<td></td>
<td>Ø Eye (D1) (D2)</td>
<td>12 (1/2")</td>
<td>12 (1/2")</td>
<td>16.5 (5/8")</td>
<td>16.5 (5/8")</td>
</tr>
<tr>
<td></td>
<td>Gauge (W2)</td>
<td>6 (1/4")</td>
<td>6 (1/4")</td>
<td>10 (3/8")</td>
<td>10 (3/8")</td>
</tr>
</tbody>
</table>

Fig. 3.3.e

Fig. 3.3.f

Fig. 3.3.g

Fig. 3.3.h

Fig. 3.3.i
3.3 Hull attachment

The lower bearing assembly of the Furlex TD system is to considered as an extension of the forestay fitting inside the hull. As it is locked horizontally at deck level, there is a toggle fitted between the lower bearing assembly and the forestay/luff section. This toggle, together with the universal joint function of the adapter tube, will create the required articulation as per the guiding principle item 3.1.

Check that the through-deck fitting does not interfere pulpit, navigation lights or other deck fittings.

Check that the anchor well drains freely.

Make sure that the forestay fitting in the anchor well is designed and constructed to take the full forestay load.
3.4 Fitting below deck

3.4.1 Lower bearing assembly

Make sure that there is enough space between the forestay fitting and deck for the lower bearing assembly before the hole is made. See fig. 3.4.a and table 3.4.2 for dimensions of the lower bearing assembly.

<table>
<thead>
<tr>
<th>3.4.2 Dimensions for installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forestay wire (mm)</td>
</tr>
<tr>
<td>200 TD</td>
</tr>
<tr>
<td>Ø 6mm</td>
</tr>
<tr>
<td>Ø 7mm</td>
</tr>
<tr>
<td>Ø 8mm</td>
</tr>
<tr>
<td>300 TD</td>
</tr>
<tr>
<td>Ø 8mm</td>
</tr>
<tr>
<td>Ø 10mm</td>
</tr>
</tbody>
</table>

The dimension F is nominal. In this area the thickness of the deck should not exceed 15 mm. If the deck is thicker than 15 mm, it should be possible to reduce this with a cavity. This will allow the clearance for the top forward drum edge. If the deck is of sandwich construction, ensure that water cannot enter the core material and cause structural damage.

Furlex TD incorporates an integral screw for fine adjustment of the under deck dimension “A”. This simplifies adjustment between different boats. Extra extension links and toggles are available. (For dimensions see table 3.2.2).

For a larger gaps: use a custom made stainless steel bar or rod stay. Short wire pendants are not recommended as the forestay load may not be distributed evenly and wire will not resist the torque which may be produced.

Regarding "Routing of the furling line", see chapter 6.3 for further instructions.
3.5 Location of the through-deck hole.

The bearing of the through-deck fitting has a spherical surface which compensates for smaller angle discrepancies between forestay and through-deck fitting. However, it is important to minimize the discrepancies to achieve maximum furling performance. The angle between the forestay and deck must be between 72 and 74. If the angle exceeds these limits, spacers must be added between the through deck fitting and the deck, so that the conditions are fulfilled.

3.5.1 How to decide the intersection point of the forestay on the deck.

The by far best method is to stay the mast using a forestay which extends through a smaller hole in the deck (See fig. 3.5.b). Below two different methods to decide the intersection point are listed. For both methods, it is assumed that the deck is of uniform thickness.
3.5.2 Mast is not stepped

1. Establish the forestay angle. Use an accurate drawing, which shows details of the area of the deck where the Furlex will be attached (see fig. 3.5.c).
2. Transfer this angle to a cardboard jig.
3. Press the jig against the underside of the deck and move it longitudinally until the edge representing the forestay line intersects the hole in the forestay fitting in the anchor well. Mark the intersection point on the underside of the deck and drill a 6.5 mm hole through the deck.

Fig. 3.5.c

![Diagram of mast and forestay](image)

3.5.3 Mast is stepped using a forestay attached to the final forestay chain-plate.

1. Make a jig which represents the forestay angle (FA) above deck (See fig. 3.5c)
2. Using this jig, mark the angle CSA between the forestay fitting in the anchor well and the forestay intersection point
3. If these angles are equal, the existing forestay fitting is correctly located. If the angles are not equal the forestay angle FA must be used also below deck to decide the intersection point. Press the jig against the underside of the deck and move it longitudinally until the edge representing the forestay line intersects the hole in the forestay fitting in the anchor well anchor well. Mark the intersection point in the for-and aft direction accurately on the underside of the deck and drill a 6.5 mm hole through the deck.
4. Remove the forestay. The recommended procedure is to firstly slacken the backstay. Pull the masthead forward using the genoa halyard. Secure the halyard using a “D”-shackle or tie to a strong deck fitting. For safety reasons do not use the halyard snap shackle.

NOTE. If the forestay is to be used to decide the forestay length FLD, the setting of any rigging screw must not be changed

5. Remove the forestay. Measure the distance between deck level and the chainplate pin hole (see fig. 3.7.a) and enter the figure in table 3.6.1.
6. Remove the forestay fitting from the deck.
7. Mark the intersection point on the underside of the deck by drawing a line along the longitudinal centreline of the boat and using earlier marking as per item 3.
8. Drill a 6.5 mm hole at the intersection point.

For further fitting work see item 4.1

Always use a strong "D" shackle or tie the halyard!
3.6 Calculating the length of the forestay wire.
(The following is valid for a yacht with the mast stepped.)

1. Determine the rake of the mast with the fore-/backstay tensioned.

2. Slacken the backstay as much as possible, but make sure that any rigging screw is not unscrewed so far that the threads are no longer visible "on the inside". The forestay setting should not be adjusted. If there is insufficient adjustment in the backstay, and the forestay rigging screw must be adjusted to allow removal, first mark its thread with adhesive tape.

3. Pull the masthead forward using the genoa halyard. Secure the halyard using a "D" shackle or tie it to a strong deck fitting. For safety reasons, do not use the halyard snap shackle.

Always use a strong "D" shackle or tie the halyard!

4. Take down the forestay. If it was slackened, adjust it’s rigging screw back to the tape marks.

5. Measure the forestay length (FL) with just enough tension to keep it straight.

6. Enter the measurement in "Table 1" below, under the heading "Your forestay", in the row marked FL.

7. Calculate the new wire length WL in Table 1. Refer to the column marked "example" to see how this is done.

Table 1: Calculation of forestay wire length

<table>
<thead>
<tr>
<th></th>
<th>Your forestay</th>
<th>Exemple (200 TD/Ø8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL</td>
<td>Existing forestay length including rigging screw, no tension. (See fig. 3.7.a)</td>
<td>15.150</td>
</tr>
<tr>
<td>CH</td>
<td>Add the distance between the hole in the chainplate and deck level. The measurement to be take along the forestay line. (See fig. 3.5.c)</td>
<td>+ 50</td>
</tr>
<tr>
<td>FLD</td>
<td>FL + CH = FLD, FL also correspond to any measurement taken from the rig drawing of the boat.</td>
<td>15.200</td>
</tr>
<tr>
<td>TDH</td>
<td>Deduction for the level of Furlex TD above deck</td>
<td>- 145</td>
</tr>
<tr>
<td>NFL</td>
<td>New forestay length =</td>
<td>15.055</td>
</tr>
<tr>
<td>T</td>
<td>Deduction for wire terminal + toggle</td>
<td>- 85</td>
</tr>
<tr>
<td>WL</td>
<td>Cutting measurement. The new forestay wire is to be marked at this point.</td>
<td>= -14.970</td>
</tr>
</tbody>
</table>
3.7 Calculating the length of the luff extrusion

1. Insert the length of the new forestay wire (WL) as calculated in "Table 1” into "Table 2”, in the row marked WL.
2. Calculate the number of full length extrusions and the length of the top extrusion.

3.7.1 Table 2: Calculation of luff extrusion length

<table>
<thead>
<tr>
<th>WL</th>
<th>Length of new forestay wire (as per Table 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+B</td>
<td>Fixed deduction (A+B):</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A+B Deduction</th>
<th></th>
</tr>
</thead>
</table>
| 200 TD | Ø 6 mm wire: -1000 mm (39 3/8")
Ø 7 mm wire: -1000 mm (39 3/8")
Ø 8 mm wire: -1000 mm (39 3/8") |
| 300 TD | Ø 8 mm wire: -1020 mm (40)
Ø 10 mm wire: -1020 mm (40) |

<table>
<thead>
<tr>
<th>C+D</th>
<th>C+D=</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.970</td>
<td>13.970</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>Max. number of 2400 mm (94 1/2") extrusions which together are shorter than C+D: [\text{.........ex} \times 2400 = C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Length of top extrusion = [\text{The top extrusion is normally cut from the 2000 mm extrusion. [\text{Round the edges of the cut end using a file.}] [\text{If the top extrusion is shorter than 400 mm (15 3/4"), the joint will be too near the top. In this case replace the uppermost full-length 2400 mm extrusion with the 2000 mm extrusion. In this way the joint is moved 400mm (15 3/4") down the stay. Adjust the C and D measurements as follows:}] [\text{Deduct 400 mm (15 3/4") from the C measurement.}] [\text{Add 400 mm (15 3/4") to the D measurement.}]]</td>
</tr>
<tr>
<td>E</td>
<td>Cut the distance tube for the top extrusion in accordance with the following fixed deduction:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E Deduction</th>
<th></th>
</tr>
</thead>
</table>
| 200 TD | Ø 6 mm wire: -360 mm (14 11/64")
Ø 7 mm wire: -360 mm (14 11/64")
Ø 8 mm wire: -360 mm (14 11/64") |
| 300 TD | Ø 8 mm wire: -355 mm (14")
Ø 10 mm wire: -355 mm (14") |

<table>
<thead>
<tr>
<th>Deduction:</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of distance tube E=</td>
<td>-360</td>
</tr>
</tbody>
</table>

360 mm (14 11/64")
Fig. 3.7.a
4 Assembly of the Furlex system

4.1 Making deck hole and fitting of through-deck fitting

The best way to decide the location of the through-deck fitting is to step the mast with a forestay, which passes through a smaller hole in the deck (See fig. 3.5.1). If using this procedure follow the instruction starting at item 1. If making the hole for the through deck fitting is the first step, start at item 5.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Using the 6.5 mm hole at the intersection point (see 3.5.1) as it centre, cut a 50 mm hole in the deck.</td>
</tr>
<tr>
<td>2.</td>
<td>Step the mast and use a genoa halyard (the one intended for the Furlex) as forestay. Lead the halyard through the hole in the deck and attach it to the hole in the forestay fitting. Attach the halyard with a D-shackle fitted to the halyard with a knot of talurit. If the halyard is fitted with a snap shackle this should not be used for safety reasons.</td>
</tr>
<tr>
<td>3.</td>
<td>Mark the position of the halyard on the edge of the 50 mm hole longitudinally as well as laterally.</td>
</tr>
<tr>
<td>4.</td>
<td>Take the tension off the genoa halyard, using another halyard. Disconnect the first genoa halyard.</td>
</tr>
<tr>
<td>5.</td>
<td>Fit a piece of wood, plywood or similar, using 3 screws as per fig. 4.1.c. Locate the holes close to the hole edge to provide clearance for the saw/hole saw. Note: To make the markings more precise, the 50 mm hole in a deck of more than 5 mm should be filled with a piece of wood and “quick curing “ filler.</td>
</tr>
<tr>
<td>6.</td>
<td>Put the enclosed hole jig on top of the hole: Check that the jig reference lines coincide with the deck markings. Secure the jig with adhesive tape.</td>
</tr>
</tbody>
</table>

NOTE! Always use a strong "D"-shackle or tie the halyard!
4.2 Fitting of the lower bearing assembly to the boat.

1. Move the lower bearing assembly through the deck fitting. Undo the adjustment screw a little extra and connect the forestay fitting. (If extension links or similar are to be used. See instruction item 3.4.1)

2. Turn the adjustment screw so that the lower edge of the tack ring is about 4-5 mm from the through deck fitting. Pull the tack snap shackle upwards and rotate the tack ring between its end stops. Check that the ring does not touch the through deck fitting at any point. Adjust if required.

7. Drill the large hole using a hole saw or jigsaw. Do not make the hole too big. File if required. Also drill the holes the fitting screws (see table 2.4 for correct dimensions).

8. Fit the through deck fitting. The screws must engage into the fitting by the correct amount:
 - 200TD: 10-12 mm,
 - 300TD: 12-15 mm.
 Also check that the through deck fitting rests against the aft edge of the large hole.
4.3 Fitting the line drum and line guide

The line drum consists of two halves. These are easier to fit after the Furlex is fitted to the boat.

1. Feed the furling line through the hole in the line guide fitting and then through the hole in the line drum half which has a clip fitted.

2. Undo the clip and insert the line into the oval space as shown in the diagram. Fasten the clip securely!

3. Press the line drum halves together around the lower bearing assembly. The oval flange must match the recess in the lower bearing assembly. Check that both connector clips engage.

4. Slide the line guard on from aft and turn it half a revolution as per fig. 4.3.d so that it “clips” firmly into place. Press the locking block in from underneath (arrow 2)

5. Hook the line guide fitting on to the line guard and bring this up into position. Tighten the screws in the stainless steel line guard housing
6. Tighten the screw \(\odot \) lightly.

7. Adjust the line guide vertically so that it is midway between the line drum flanges. If the casing or line guard come into contact with the line drum flanges, unnecessary friction will be caused.

8. Adjust the alignment of the line guide towards the first lead block and tighten the screw. (See also Chapter 6.3, "Furling line arrangement").

At this stage the furling line arrangement should be fitted. See “Routing of the furling line” item 6.3 for instructions. After the line is fitted, the line guard should be carefully re-aligned and the locking screw permanently tightened.
4.4 Assembly of the luff section

Assembly should be carried out on a horizontal surface. Connect the luff extrusions one by one as follows:

1. The long joining sleeve must be in the 770 mm (30 5/16")/800 mm (31 ½") luff extrusion when commencing assembly.

2. Fit the long connecting plate at the same time as the sail feeder as shown in the diagram. Push the joining sleeve up so that it is flush with the top edge of the sail feeder.

3. Remove the 200 mm (7 3/8") joining sleeve from a 2400 mm (94 1/2") extrusion (this joining sleeve is to be used later for the 2000 mm (78 3/4") extrusion). Connect the 2400 mm (94 1/2") extrusion to the 770 mm (30 5/16")/800 mm (31 ½") extrusion. Push the long joining sleeve of the 770 mm (30 5/16")/800 mm (31 ½") extrusion into the 2400 mm (94 1/2") extrusion until it lies flush with the lower edge of the 770 mm (30 5/16")/800 mm (31 ½") extrusion.

4. Insert the locking pin together with the locking adhesive. Secure the pin with a piece of adhesive tape. (The tape is removed when the lower bearing assembly is slid on.)

Note: Do not allow locking adhesive to come into contact with the skin!
5. Fit a joining sleeve into the next 2400 mm (94 1/2") extrusion together with a connecting plate. Connect this to the lower extrusions. Using a spare joining sleeve, push in the distance tube from the top until the lower joining sleeve touches the distance tube below the join. Check that the distance (J) between the end of the distance tube and the end of the extrusion is approximately half the length of a joining sleeve.

6. Connect the remaining extrusions according to "Table 2" (3.7.1)

7. Fit the halyard swivel over the top end of the extrusion, slide it down as far as the sail feeder and secure it in this position with adhesive tape. Fit the top guard and secure it with the two pre-fitted screws. Tighten the screws until they bottom, but do not over-tighten.

8. Feed the torque tube and adapter onto the luff section, taking care to avoid scratches. Wrap protection around the torque tube to avoid scratches to the polished surface and temporarily secure it in the position shown above.
4.5 Fitting the wire

1. Stretch the Furlex wire out by hand on a flat surface. Be careful when you open the wire coil as it may uncoil quickly.

> NOTE! Be careful when you open the wire coil!

2. Measure the wire from the centre of the hole in the terminal end fitting. Mark the measurement WL carefully on the wire using a marker pen. (The WL measurement was calculated in "Table 1", Chapter 3.6.1.)

3. The wire is annealed and tapered, making it easier to fit into the extrusion. Do not cut the wire yet.

4. Feed the wire through the luff extrusions from the top until the eye of the end fitting stops against the top guard. Secure it in this position with adhesive tape. If the wire catches inside the extrusion, turn it counter-clockwise until it passes the obstruction.

5. Put adhesive tape around the wire on both sides of the cutting mark to assist cutting. Check that the measurement between the cutting mark and the bottom edge of the 770 mm (30 5/16")/800 mm (31 ½") extrusion is as shown in the following table 4.5.1.

<table>
<thead>
<tr>
<th>4.5.1</th>
<th>Wire should protrude:</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 TD</td>
<td>Ø 6 mm wire: approx 110 mm (4 11/32")</td>
</tr>
<tr>
<td></td>
<td>Ø 7 mm wire: approx 105 mm (4 1/8")</td>
</tr>
<tr>
<td></td>
<td>Ø 8 mm wire: approx 85 mm (3 11/32")</td>
</tr>
<tr>
<td>300 TD</td>
<td>Ø 8 mm wire: approx 130 mm (5 1/8")</td>
</tr>
<tr>
<td></td>
<td>Ø 10 mm wire: approx 105 mm (4 1/8")</td>
</tr>
</tbody>
</table>

7. Unscrew the socket, wedge and former from the terminal part.

8. Thread the socket onto the wire.
9.
Slide the wedge over the core (7 strands) of the wire. The core of the wire should protrude approx. 2 mm (3/32”) from the wedge.

10.
Space the outer strands of the wire evenly around the wedge and bring down the socket so that the strands are held in place. Hold an adjustable spanner between the 770 mm (30 5/16”)/800 mm (31 ½”) extrusion and the socket. Tapping the core of the wire, locate it firmly in the socket. Check that the core of the wire protrudes approx. 2 mm from the wedge. See fig. 4.2.c.

NOTE! Check that no strands slip into the slot of the wedge.

11.
Bend the outer strands inwards a little using a pair of pliers, or tap the strands with a small hammer. In the latter case, rest the socket’s thread on a soft surface (wood or similar) to prevent damage.

12.
Insert the former into the threaded hole of the terminal part. Lubricate the socket’s thread with a long bead of locking adhesive. Screw the terminal part onto the socket and tighten carefully, forcing the wire further into the terminal.

13.
Unscrew and check that the outer strands are evenly distributed around the wedge. If some strands are crossed, correct their positions.

NOTE! Check that no strand has slipped into the slot of the wedge!

14. If assembly is unsuccessful and needs to be repeated, refer to the relevant sections of Chapter 17, "Dismantling the Furlex".

15.
Apply another 2 or 3 drops of the locking adhesive to the thread and screw the terminal together, tightening it firmly. The terminal is now permanently locked.

Fig. 4.5.c

Fig. 4.5.d

Fig. 4.5.e

Fig. 4.5.f

Fig. 4.5.g
16. Check length NFL of the stay is according to “Table 1” (3.6.1) & fig. 7.a.

Mark the 800 mm (31 ½”) 770 mm (30 5/16”) extrusion with a permanent marker as shown. This will assist final alignment with adapter+ adapter tube.

18.

The luff section unit is now ready to fit to the boat.
See “Rigging” chapter 16.
5 Halyard routing

Halyard routing is one of the most important things to attend to for a correct mounting. The angle between the halyard and the forestay must be 5–10° - see fig. 5.4.c. If this angle is less, the halyard may wrap around the luff section when the sail is being furled, possibly damaging the halyard and the luff extrusion. Failure to observe what is happening in this situation may even result in damage to the forestay wire.

Incorrect halyard routing can promote "Halyard wrap” which may cause severe damage to the forestay, and put the entire rig at risk. If the sail is furled with the aid of a winch, take great care. It can be difficult to control the tension on the furling line.

5.1 Halyard leads

To avoid halyard wrap, 2 halyard leads are included in the Furlex kit. These are easy to fit and are suitable for all makes of mast. When sailing, movement occurs between the wire halyard and the halyard lead. To prevent halyard wear, the halyard lead is made of bronze. This is "softer” than a wire halyard, so the halyard lead will wear before the wire. Halyard leads should be inspected once a year and any sharp edges smoothed with a file. The halyard lead should be replaced when wear reaches 50%. The halyard leads are not covered by the 2-year Furlex warranty.
5.2 Halyard sheave box

A sheave box can also be fitted to the mast to meet the 5–10° requirement. The sheave box will not damage the halyard, nor is it worn by the wire. Installation is more complicated but the box will eliminate the need to replace the halyard leads in future. Newly manufactured Seldén Masts on which Furlex is to be fitted are always fitted with a sheave box. Sheave box kits (with assembly instructions) are obtainable from all Furlex dealers.

Fig. 5.2.a

5.2.1 Sheave boxes

<table>
<thead>
<tr>
<th>Wire Halyard</th>
<th>Ø 4 (5/32")</th>
<th>Ø 5 (3/16")</th>
<th>Ø 6 (1/4")</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rope Halyard</td>
<td>Ø 8(5/16")</td>
<td>Ø10(3/8")</td>
<td>Ø 12(1/2")</td>
</tr>
<tr>
<td>Sheave box</td>
<td>AL-45</td>
<td>AL-70</td>
<td>AL-90</td>
</tr>
<tr>
<td>Article no.</td>
<td>505-004-10</td>
<td>505-006-10</td>
<td>505-012-10</td>
</tr>
<tr>
<td>Sheave width</td>
<td>13 mm (1/2")</td>
<td>13 mm (1/2")</td>
<td>16 mm (5/8")</td>
</tr>
</tbody>
</table>

Fig. 5.2.b

5.3 Spinnaker halyard

If the boat is equipped with a spinnaker halyard, this must be kept clear of the Furlex system to avoid halyard wrap. An effective solution is to lead the halyard around the upper shroud and then down aft the spreaders.

Stowing a spinnaker halyard parallel to the Furlex stay is not recommended!

5.4 Fitting the halyard lead

The Furlex kit contains 2 halyard leads. If the mast is equipped with two genoa halyards they should each run through a halyard lead. The halyard leads can be fitted side by side or moved round the side of the mast if there is a lack of space.

To avoid corrosion between the bronze lead and the aluminium mast, each lead is supplied with a self-adhesive insulator sheet. It is important to fit this between the lead and the mast. The lead, which is made of bronze, can otherwise cause corrosion damage on the aluminium mast surface.

Figs. 5.4.c–5.4.e give the fitting measurements for Seldén masts. These measurements can also be used for other makes of mast, but the angle must be checked carefully. An angle of more than 10° may result in unnecessary wear to the halyard lead.

Fig. 5.4.a
For the halyard routing to work properly, the halyard swivel must be in the correct position to achieve the required angle of 5–10°. If the sail does not have the required luff length, this needs to be adjusted. (See Sail, 7.1).

Fitting instruction:

1. Measure the position of the leads. Mark the position with the self-adhesive insulator sheets.

2. Drill the holes with the enclosed Ø 5.3 mm (7/32”) drill bit, using the fitting as a jig. It is easiest to drill the holes before the Furlex stay is fitted.

3. Fit the halyard leads "over" the respective halyard as the halyard shackles are too big to be fed through the eye.

4. Lubricate the screws with grease and mount the halyard leads. The screws are self-tapping M6 screws which can be screwed directly into the Ø 5.3 mm (7/32”) hole. The grease makes fitting easier and prevents corrosion.
6 Furling line arrangement

6.1 Functional description
As the sail unfurls, the furling line is wound onto the line drum. It is centred on the line drum through the hole in the line guide fitting, which has a stainless steel bush to reduce friction and wear on the line. The furling line is distributed evenly on the line drum by the light pressure exerted on it by the flexible line guard, which has low friction aluminium edge protectors.

6.2 Winding the line onto the drum
- Turning the luff extrusion by hand, wind approx. 30 turns of the furling line onto the line drum.
 - If the sail’s ultraviolet (UV) protection is fitted on the starboard side, the furling line shall exit on the port side of the line drum. Turn the luff extrusion clockwise.
 - If the UV protection is fitted on the port side, turn the extrusion counter-clockwise. The line will then exit on the starboard side.
- Secure the line in the tack snap shackle as per fig. 6.2.a. Accidental unfurling is then prevented.

Fig. 6.2.a

To prevent from accidental unfurling the line can be secured into the snap shackle.
6.3 Routing the furling line

The illustration below shows of principal arrangement of furling line routing inside a anchor well to achieve maximum furling performance. The turning block inside the anchor well and the sheave box required to lead the line through the deck are not included in the Furlex package as these parts must be individually adopted for each boat.

- The furling line must enter the line drum perpendicular to the forestay. There must be at least 300 mm (12”) from the drum to the first tuning point of the line to make the line furl evenly on the drum

- Blocks with large sheaves on roller bearings are recommended to minimize friction losses.

- Avoid leading the line through tubes incorporated in the deck as this increases the risk for friction losses.

- Strength requirement. To cope with the loads for which the Furlex system is designed, the turning block below deck and through deck passage sheave house must have a safe working load of not less than:
 - 200 TD: 3000 N (615lb)
 - 300 TD: 5000 N (1125lb)

- When the line is fitted the line guide is finally aligned and the locking screw is permanently tightened. (See “Assembly of line drum and line guide” Chapter 4.3)

The line should be led aft to the cockpit via the lead blocks included in the Furlex package. The lead blocks are mounted on stanchions and the pulpitt. See fig. 6.4.a–6.4.f for how to fit the 200 Series and fig. 6.5.a for the 300 Series.

The final turning block by the cockpit is not included in the Furlex kit. This needs to be matched individually to each boat depending on the attachment points, the line arrangement chosen and possibly also the type of other blocks on the boat. We recommend a swivel block which is free to self align.

The maximum working load of the block should not be less than:
 - 200 TD: 3000 N (615lb)
 - 300 TD: 5000 N (1125lb)

⚠️ It must be possible to belay the furling line securely. A block with a Cam-cleat works well when securing a reef, but is unreliable if the boat is left unattended. The line should then be secured on a normal cleat for safety reasons. We recommend a single turning block in combination with a cleat.

⚠️ If the furling line is accidentally released, the sail may unfurl and flap unchecked in strong winds. It could be damaged irreparably!
6.4 200 TD: Fitting the stanchion blocks

The Furlex kit contains 4 stanchion blocks to be fitted to a 25 mm (1”) stanchion or pulpit. The block has a ball-and-socket joint and can be angled in any direction.

1. Insert the clamp halves into the sheave house as shown.

2. Squeeze the clamps together around the stanchion.

3. Screw the clamp halves together using the enclosed M6 screw and nut. Lightly tighten the screw.

4. Align the sheave house in the desired direction and tighten the M6 screw.

5. Thread the furling line and check the position. Finally, lock the block in position.

6. ... using the enclosed self-tapping screws.

6.5 300 TD: Fitting the stanchion blocks

The Furlex kit contains 1 articulated block to be fitted preferably on a Ø 25 mm (1”) pulpit and 4 fixed stanchion blocks for fitting on a Ø 25-mm (1”) stanchion. The fixed blocks can be fitted on Ø 30 mm (1 1/4”) stanchions, but the standard screws must be replaced by M6-25 mm screws.

Assembly:
The articulated block is fitted as shown in figs. 6.4.a–6.4.f. The fixed blocks are fitted on the stanchion as shown in the diagram. The screw heads should be turned in towards the boat.
7 The Sail

7.1 Adapting the sail to the Furlex system

☐ To fit the Furlex system, an existing sail may need a number of modifications. The maximum luff length is calculated as shown in Table 7.1.1 and fig. 7.1.b. FLD - (F + E) (existing forestay length FLD as per Table 3.6.1 – less head and tack deduction).

![Warning]

It is most important that the halyard swivel is located so that the halyard satisfies the 5–10° angle requirement. If the sail prevents the swivel from reaching the correct position, the luff length needs to be adjusted.

IF THE SAIL IS TOO LONG: Shorten the sail, e.g. in conjunction with changing to a luff tape compatible with Furlex.

IF THE SAIL IS TOO SHORT: Lengthen the sail by means of a wire pendant fitted to the head of the sail. Attach the pendant directly to the sail by a talurit splice to prevent unintentional removal, loss or exchange. All the boat’s foresails should be adjusted to the correct luff length. See 7.3 page 35 (There must be a minimum distance of 50 mm (2”) between the top of the halyard swivel and the top guard when the sail is fully tensioned).

☐ ”Cutback” for tack see Table 7.1.1.

☐ The luff tape must be compatible with the Furlex luff extrusion. See luff extrusion measurements in Table 7.1.1.

☐ If the sail is to be fitted with UV protection, this is best placed on the starboard side. The tack of the sail will then be in line with the luff grooves of the luff section when unrolled (see Chapter 12, "Reefing"). If the sail already has UV protection on the port side, the tack will be turned slightly to starboard. The free turn of the tack ring will function equally well.

☐ Use webbing loops at the sail head and tack instead of eyes (cringles). The sail will then form tightly round the luff extrusion when furling, and achieve a better shape when reefed.
7.1.1 Table of sail measurements

<table>
<thead>
<tr>
<th>Furlex type</th>
<th>200 TD</th>
<th>300 TD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head deduction F</td>
<td>540 (21 1/2")</td>
<td>Ø8, 550 (22")</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ø10, 650 (25 5/8")</td>
</tr>
<tr>
<td>Tack deduction E</td>
<td>130 (5") 150 (6")</td>
<td></td>
</tr>
<tr>
<td>(Any additional toggle or link must be added to E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cutback CB</td>
<td>60 (2 3/8") 80 (3 1/8")</td>
<td></td>
</tr>
<tr>
<td>Internal diameter of luff groove DLG</td>
<td>Ø6 (1/4") Ø7.5 (9/32")</td>
<td></td>
</tr>
<tr>
<td>Width of luff groove WLG</td>
<td>3.0 (1/8") 3.0 (1/8")</td>
<td></td>
</tr>
<tr>
<td>Overall extrusion dimensions</td>
<td>31x21 (1 7/32"x13/16")</td>
<td>39x27 (1 17/32"x1 1/16")</td>
</tr>
</tbody>
</table>

Fig. 7.1.a

7.2 Sail shape

The design of a sail can vary depending on its intended use and the desired performance.

The clew of the sail can be high or low.

In most cases a genoa has a low clew, with the foot sweeping as close to the deck as possible. To achieve the optimal trim of a reefed sail you must be prepared to adjust the sheeting point.
7.3 Determining the length of the pendant

To hoist the sail see the description in Chapter 11.1.

1. Attach the head of the sail directly to the halyard swivel.

2. Tack the sail at deck level with a piece of rope between the sail tack and the tack snap shackle on the lower bearing assembly.

3. Hoist the sail (See Chapter 11.1, “To hoist the sail”). Adjust the rope length at the tack so that the halyard swivel attains its top position, i.e. the 5–10° requirement is satisfied, when the halyard is fully tensioned.

4. There should never be less than 50 mm (2”) clearance between the top of the halyard swivel and the top guard when the sail is fully tensioned.

5. Attach a wire pendant corresponding to the length of the rope directly to the head of the sail by a talurit splice. This cannot then be removed unintentionally, lost or exchanged.

6. Measure the length of the rope while the halyard is still tensioned.

7. All the boat’s foresails must be adjusted to the correct luff length.

For the halyard routing to work properly, the halyard swivel must be in the correct position to achieve the required angle of 5–10°.
OPERATING MANUAL

To derive the maximum benefit and enjoyment from your Furlex system, we recommend that you study this operating manual carefully. All safety-related information is indicated by the following symbol.

Furlex is specified and manufactured using Metric dimensions. To assist owners unfamiliar with this system, the approximate equivalent Imperial dimension are given in brackets.

⚠️ This information must be followed to avoid damage to the system and the risk of personal injury.
The 2-year guarantee on the Furlex system is only valid if the system is operated correctly according to the manual.

Unless you are fitting the Furlex system yourself, you do not need to read the entire assembly manual. However, there are references in the operating manual to certain sections of the assembly manual. It is very important to read and note these cross references.

Any additional fittings recommended in the manual are obtainable from your nearest Furlex dealer. Seldén’s home page: www.seldenmast.com
10 Halyard Routing

10.1 Summary

IMPORTANT POINTS!

- Routing the halyard is one of the most important aspects of system assembly for safe, trouble-free sailing using the jib furling and reefing system.
- The angle between the halyard and the forestay must be 5–10°. See fig. 5.4.b. If the angle is less, the halyard may wrap around the luff section when the sail is being furled, possibly damaging the halyard and the luff extrusion. Failure to observe what is happening in this situation may even result in damage to the forestay wire.
- "Halyard wrap" may cause severe damage to the forestay and put the entire rig at risk. If the sail is furled with the aid of a winch, take great care. It can be difficult to control the tension in the furling line.
- If the 5–10° requirement is not satisfied, halyard leads or a sheave box must be fitted to avoid halyard wrap.
- 2 halyard leads are enclosed in the Furlex kit. Check if these are fitted.
- See also under "Halyard routing", Chapter 5.

![Fig. 10.1.a](image1)

![Fig. 10.1.b](image2)

May lead to

![Warning](image3)

When sailing, movement occurs between the wire halyard and the halyard lead. To prevent halyard wear, the halyard lead is made of bronze. This is a softer material than a wire halyard, so the halyard lead will wear before the wire. Halyard leads should be inspected once a year and any sharp edges smoothed with a file. The halyard lead should be replaced when wear reaches 50%. The halyard leads are not covered by the 2 year Furlex warranty.
10.2 Halyard sheave box
A sheave box can also be fitted to the mast to meet the 5–10° requirement. The sheave box will not damage the halyard, nor is it worn by the wire. Installation is more complicated but the box will eliminate the need to replace the halyard leads in future as above. Newly manufactured Seldén masts on which Furlex is to be fitted are always fitted with a sheave box. Sheave box kits (with assembly instructions) are obtainable from all Furlex dealers.

See Table 5.2.1 and fig. 5.2.a for further information

10.3 Spinnaker halyard
If the boat is equipped with a spinnaker halyard, this must be kept clear of the Furlex system to avoid halyard wrap. An effective solution is to lead the halyard around the upper shroud and then aft of the spreaders.

⚠️ Stowing a spinnaker halyard parallel to the Furlex stay is not recommended!
11 Sailing with Furlex

11.1 To hoist the sail

The forestay must be properly tensioned each time the sail is hoisted. You should therefore tension the backstay and any running backstays before hoisting the sail.

1. Tension the forestay for hard close-reach sailing before the sail is hoisted. If the sail should be hoisted and firmly tensioned before the forestay, this may put excess strain on the halyard, halyard swivel and sail when the forestay is tensioned afterwards.

2. Lay out the sail on deck. It should be carefully flaked down with the tack turned forward.

3. Turn the tack ring counter-clockwise if the furling line exits on the port side of the drum, or clockwise if it exits on the starboard side.

4. Attach the tack of the sail to the tack snap shackle.

5. Tie the line of the prefeeder to the hole below the tack snap shackle or to the shackle itself.

6. Tie the sheets to clew. Feed the sheets through the sheet blocks and on to the cockpit. Make a figure of eight knot at each end.

7. Attach the halyard to the upper eye of the halyard swivel.
8. Feed the luff tape through the sail feeder into the luff groove. If the furling line exits on the port side of the line drum, the sail should be hoisted in the starboard groove. If the line exits on the starboard side, use the port groove. Hoisting the sail in the "right" groove reduces initial resistance when furling the sail, which then has less of a "fold" along the forestay than if the other groove is used.

9. Hoist the sail. The pre-feeder assists luff tape feed by steering the sail in towards the luff extrusion and sail feeder at a small angle. Tension the halyard until a vertical crease appears in the luff of the sail, then slacken off until the crease disappears. Belay the halyard.

10. Remove the prefeeder from the tack ring.

11. Furl the sail on the Furlex luff section by pulling on the furling line. Let the windward sheet run freely. Keep some tension in the leeward sheet, for example by placing a turn around a winch. It is important to furl the sail tightly and evenly, as a sail which is furled too loosely may blow out a little in strong winds. If the boat is left unattended, the sail may flap until it tears. A very loosely furled sail may also cause unnecessary wear, as the sail roll will swing back and forth in the wind.

12. Check the number of turns of the furling line remaining on the line drum. When the largest sail is furled tightly, there should be 3–5 turns left. To adjust the number of turns, detach the sheet and turn the Furlex luff extrusion by hand until the correct number of turns are on the drum. When furling in strong winds, the sail will roll more tightly, requiring more turns on the line drum and meaning that more line will be needed. Make sure you always have sufficient turns of line on the drum.

13. Check that the halyard swivel is at least 50 mm (2") from the top guard and that the halyard angle satisfies the 5–10° requirement.

14. Once all these points have been checked, mark the halyard as shown in the diagram to prevent over-tensioning by a winch or when the forestay/backstay is adjusted. Mark the maximum tension position of the backstay adjuster.

15. The forestay tension can now be adjusted without putting too much strain on the halyard.

Warning! Never tension the halyard when the sail is reefed or furled.

11.2 Unfurling the sail

(Partial unfurling: See Chapter 12, "Reefing").

1. Release the furling line and the windward genoa sheet. Allow these to run freely while the sail is being unfurled.

2. For a controlled unfurling manoeuvre, it is best to place a turn of the furling line around a winch or a half-turn around a cleat. This introduces some drag, which is particularly useful in stronger winds.
3. Place a turn of the leeward genoa sheet around a winch and unfurl the sail by pulling in the sheet. Once the wind catches the sail it will unfurl more easily. The best point of sail for unfurling is between close reach and beam reach, as the wind will then fill the sail quickly.

4. Place a few more turns of the sheet around the winch and sheet the sail in to the desired trim.

11.3 Furling the sail

1. Release the windward sheet and ensure that it can run freely.

2. Furl the sail by pulling the furling line. Release the leeward sheet but keep a little tension on it, for example by placing a turn around a winch. It is important to furl the sail tightly and evenly, as a sail which is furled too loosely can blow out a little in strong winds. If the boat is left unattended, the sail may flap until it tears. A very loosely furled sail may also cause unnecessary wear, as the sail roll will swing back and forth in the wind.

3. Belay the furling line carefully. If the boat is left unattended, the furling line should be belayed on a cleat for safety.

If the furling line is accidentally released, the sail may unfurl and flap unchecked in strong winds. If left for any length of time, it could be damaged irreparably!

If the boat is left for a fairly long period, it is a good idea to take down the sail and stow it below deck. It is then protected from UV radiation and dirt. Alternatively, a sail cover ("furling tube") can be used to protect the sail.
12 Reefing

The size of the working sail area is infinitely variable with a jib furling and reefing system. Even if the sail is designed as a furling sail incorporating foam etc. and the Furlex system is equipped with a "free turn" (see below), a reefed sail can never achieve the same efficiency as an unreefed sail of equal size. If the boat is equipped with more than one furling sail, these can be changed to suit the different wind conditions.

12.1 Free turn

Furlex is equipped with a tack swivel, meaning that furling of the tack is delayed by one revolution in relation to the luff extrusion. This causes the sail to be flattened out a little before the tack and the foot are furled. Since the tack is reinforced by several layers of sail cloth, this will increase the sail roll more with each revolution than the rest of the luff, thereby impairing the shape of the reefed sail. Furlex compensates for this by means of the tack ring delay. We refer to this function as the "Free turn".

12.2 Reefing under sail

☐ In strong winds it may be necessary to reef the sail. It is important then to furl the sail tightly, as this both preserves the sail and gives it a better shape.

☐ The best point of sail for reefing is on a close reach to beam reach. The wind will then partly fill the sail and help to improve its shape when reefed.

☐ If using a winch for the furling line, first check that there is no obstruction which may interrupt the furling operation and possibly cause damage.

1. Slacken off the leeward sheet until the sail just begins to flap along the luff.
2. Pull in the furling line so that the sail is furled and flattened out. Belay the furling line.
3. Repeat the procedure as required to obtain the desired sail area.

12.3 Setting a reefed sail from the furled position

☐ You will achieve the best sail shape by first unfurling the sail completely and then reefing down to the appropriate size. Pull in the furling line and keep the sheet well tensioned. The sail will then form a tight roll and its shape will be improved.

☐ If the wind is too strong, or there are other reasons for not wanting to unfurl the sail completely, it can be reefed from the furled position. The sail should then be furled relatively tightly. The sail cannot be expected to have as good a shape when using this method. Wear on the sail is also increased.
12.4 Adjusting the sheeting position

When the sail is reefed, it may be necessary to adjust the sheeting position. For a sail with a low clew, the sheeting position has to be adjusted even when the sail is slightly reefed, a sail with a high clew requires less adjustment. See Fig. 12.4.a. As a rule, however, you must be prepared to adjust the sheeting position as necessary to give the best sail trim.

The angular variation of the sheet relative to the deck is less for a high-clewed sail. The comparison is based on the same number of furling revolutions.

Adjustment of the sheeting position is made considerably easier if a floating sheet point arrangement is used. The traveller position is adjusted along the track by means of a line running through a block in the front of the track. The line is best routed to the cockpit where it is secured. The traveller position can also be adjusted under load with the aid of a winch.

Many furling foresails have markings in the foot for different reefing positions. After you have tested combinations of sail area and sheeting position to see which function satisfactorily, you can use these markings as a reference and mark suitable sheet points on the track.
13 Furlex for racing

Many racing yachtsmen have exploited the advantages of the jib furling and reefing system with great success. The sail can be partly furled before the start, giving good visibility and easy manoeuvring of the boat. Just before starting, the sail is unfurled and the boat crosses the line under full sail. If the boat has a small crew, the advantages are obvious.

The Furlex system can be reconfigured from a furling system to a twin-groove racing headfoil if the halyard swivel is lowered below the sailfeeder. To remove the sailfeeder see chapter 17.2 “Dismantling”. Lower the halyard swivel and refit the sail feeder.

The twin grooves now makes swift sail changes possible.

Fig. 13.4.a.
14 Adjusting the forestay length

Furlex 200TD and 300 TD are only supplied without a rigging screw.

14.1 To lengthen the forestay
The forestay can be lengthened by fitting extra toggles, see table 3.3.3. Several toggles are usually required to change the mast rake noticeably. These can only be fitted at the upper end of the system. On a Furlex with an 8mm (5/16”) forestay of the normal length 15400 mm (50’6”), the masthead is moved 158 mm (6 5/8”) aft if the forestay is lengthened using a standard toggle H=50 mm (2”).

14.2 To shorten the forestay.
To shorten the Furlex system the forestay wire as well as the luff section have to be shortened. See Dismantling chapter 17 and Assembly of the Furlex system, chapter 4

Note. The system must never be shortened by removing the lower Furlex toggle between the forestay and the lower bearing assembly. (See “Forestay attachment-guiding principle chapter 3.1 and “Hull attachment.” chapter 3.3)
15 Maintenance of the Furlex system

Maintenance is simple, even when the Furlex is rigged on the boat. Halyard leads should be inspected once a year and any sharp edges smoothed with a file. The halyard lead should be replaced when wear reaches 50%.

15.1 Lubricating the lower bearing assembly

First remove the line guide and the drum halves (see chapter 17). For best results, rinse the system with fresh water and let it dry. Lubricate all ball bearings as described below using the grease enclosed with the Furlex kit. Lubricating holes A and C are for the most important bearings to be greased, as the Furlex system rotates around these. Lubricating holes B and D are for tack ring bearings. Unscrew the adjustment screw at the bottom of the lower bearing part approx 20mm. If the stroke does not permit this, the stay must be disconnected from the boat.

Note. Secure the mast with a halyard before the stay has to be disconnected (see chapter 3.5.3). The bearings of the through deck fitting E and F have Torlon® balls and do not need lubrication. However, they should be rinsed with fresh water.

Tools: 1 Torx driver set
1 adjustable spanner
1 pair of long-noosed pliers if the stay has to be disconnected

A, B and C
Press grease into the holes A, B and C. Refit the lineguide and drum halves.

D
Unscrew the adjustment screw alt. Disconnect the forestay as per instructions above. Press grease into the hole D.

Reset the adjustment screw to its original position. There should be a gap between the lower edge of the tack ring and the through-deck fitting of 4-5 mm. Refit the lineguide and drum halves.

15.2 Lubricating the halyard swivel

1. Lower the halyard swivel down to the sail feeder.
2. Press grease into the upper bearing through the recess G and into the lower bearing through opening H in the plastic cover.
15.3 Cleaning the Furlex
Wash and rinse the entire Furlex system with fresh water and a mild detergent to remove dirt and salt crystals.

Note! Some detergents contain substances which can cause aluminium to corrode, so it is important to rinse all detergent off thoroughly.

When the parts have dried, the anodized surfaces of the luff extrusions can be treated with a silicon-free boat polish or wax. This offers good protection and prevents particles of dirt from adhering and then soiling the sail. The stainless steel components can be treated with a suitable polish.

15.4 Storage
The Furlex system is preferably stored with the mast during the winter.

⚠️ Never wrap a damp or unwashed Furlex in plastic or other impervious material.

In areas where frost can occur, the Furlex should be stored in a dry place or with it’s centre sections raised. This is to avoid ice damage to luff sections at sub-zero temperatures.

After removal of the forestay & foils, the lower bearing assembly may also be removed for storage in a clean and dry location. To do this, remove the line guide and linedrum (see Dismantling, chapter 17.3 & 17.4. Then the lower bearing assembly may be removed from the bow well.
16 Rigging

The Furlex system is best transported and rigged together with the mast.

16.1 Fitting the Furlex on a stepped mast

1. Slacken the backstay as much as possible, but make sure that any rigging screw is not unscrewed so far that the threads are no longer visible “on the inside”.

2. Pull the masthead forward using the genoa halyard. Secure the halyard using a ”D” shackle or tie it to a strong deck fitting. Do not use the halyard snap shackle for safety reasons.

3. Tie a strong, flexible line around the luff extrusion. Make two clove hitches, the upper approx.1 m (39 3/8”) from the top, taping over the knots so that they cannot slide.

4. Hoist the stay using a spare halyard.

5. “Go aloft” and attach the top end of the Furlex system to the forestay attachment. Always use a proper bosun’s chair. If there are no free headsail halyards use the main halyard. For further information, see Seldén Mast AB’s ”Hints and Advice” on ”Working aloft” or contact your Furlex dealer.

6. Attach the stay to the headbox and then to lower bearing assembly. The split pin for the clevis pin should be opened by ~ 20°. It will then retain its shape on dismantling, enabling it to be used again.

7. As the second screw is loosened, grip the luff extrusions to support their weight. When the screws are clear remove the torque tube’s protection, slide it down and fit to the cardan ring of the lower bearing assembly. Fit the bosses according to fig. 16.1c. Tighten the screws firmly. Tighten the locking screws. Apply locking adhesive to the torque tube’s top adapter screws. Lift and position the extrusion so that the mark (see p26, Fig 4.5.i) aligns with the top face of the adapter, then carefully adjust until holes in the extrusion are aligned with the adapter holes. Tighten the screws hard in place.

8. Tension the forestay to 20% of the wire’s breaking load. As the tension on the forestay cannot be measured easily when it is encased in the luff extrusion, this can be done using the backstay. Owing to the difference in the angle of these stays relative to the mast, this is on a Masthead rigg equivalent to approx. 15% of the backstay’s breaking load, assuming that it is the same diameter as the forestay. (Forestay tension = approx. 1.25 x backstay tension.)

A firmly tensioned stay offers the least furling resistance.

For further information, see Seldén Mast AB’s ”Hints and Advice” or contact your Furlex dealer.
16.2 Stepping the mast with Furlex fitted

1. Lay the mast with the front uppermost.
2. Connect the top end of the Furlex system to the forestay attachment.
3. Lift the mast with the Furlex system lying on the leading edge of the mast.
4. Have one person watching the Furlex system to ensure that it does not get caught when lifting the mast. Keep the end of the stay outside the deck area in order to avoid damage.
5. Attach the stay to the boat as described in Chapter 16.1, section 6–8.

17 Dismantling

![Fig. 17.2.a](image)

NOTE! Do not dismantle the halyard swivel or lower bearing assembly. You will find it difficult to re-assemble them correctly (the ball-bearings are loose and difficult to refit)! Contact your Furlex dealer if service is required.

17.1 Halyard swivel

The halyard swivel can be removed from the system by removing the top guard and sliding it over the end of the forestay wire. The stay also has to be detached from the mast.

Alternatively, it can also be pulled downwards in conjunction with dismantling the sail feeder and removing the lower bearing assembly.

17.2 Un-stepping the mast

Take down the sail. Loose looking screws  slightly, see fig. 16.1.c. Remove screws  and bosses . Be careful not dropping the parts. Draw a pencil line around the luff extrusion where it enters the black adapter in the adapter tube. As the second screw is loosened, grip the luff extrusions to support their weight. When the screws are clear, allow the luff extrusions to slide down.

17.3 Sail feeder

Removing the sail feeder:

1. ![Fig. 17.2 a](image) Secure the stainless steel sail feeder with adhesive tape to prevent it from falling overboard during disassembly.
2. ![Fig. 17.2.b](image) Remove the screws
3. ![Fig. 17.2.c](image) Remove the sail feeder and Twist off the connector.
Re-installing the sail feeder:

4. Push on the connector from the front of the luff section.

5. Hook on the sailfeeder at its upper edge. Secure with tape. Fit the screws.

17.4 Line guide

1. Unwind all the line from the line drum. Note the number of turns of line (for reassembly).

2. Loosen screws ⊙ and slacken screw ○ off a few turns.

3. Lower the line guide fitting and remove it.

4. Press the spring clips in (Arrow 1) and remove the locking block downwards.

5. Turn the line drum housing half a revolution and pull it off the line drum.
1. Dismantle the line drum halves.

Insert a screwdriver ① under one of the connecting clips. At the same time, press another screwdriver ② between the drum halves on the same side so that these are forced apart 3–4 mm.

Keep screwdriver ② in the same place and turn the drum half a revolution. Release the second clip ③ in the same way.

The line drum halves now separate.
17.6 Wire terminal

1. Remove the terminal part from the socket see fig. 17.5b 64.2a.
2. Remove the former from the terminal part.
3. Replace the terminal part, then loosen it ~2 turns.
4. Tap the terminal part so that the socket is pushed up the wire. If necessary, secure the wire in a vice.
 There should be at least 10 mm of free wire between the top of the socket and the jaws of the vice.
 Be careful to protect the wire against damage by the vice jaws.
5. Unscrew the terminal part again.
6. Cut all wire strands protruding outside the wedge at the bend by approx. 5 mm (3/16”). See fig. 17.6.a.
7. Prise the wedge apart slightly by inserting a small screwdriver into the slot and turning. Tap on the screwdriver so that the wedge slides off the wire.
8. Twist the wire strands into the correct positions around the core (counter-clockwise when seen from underneath) and remove the socket.
9. The wire can now be pulled out of the luff extrusion.

NOTE! If the luff extrusions are to be disassembled prior to replacing a luff extrusion etc. – do not pull out the wire. Go to Chapter 17.6.

Prior to reassembly of the forestay:

Check that the shape of the wedge was not damaged on dismantling. If so, replace it.

Cut the wire core flush with the outer strands. Remove any burrs with a file.

The decrease in forestay length which results has very little effect on the mast rake. A decrease of 5 mm (3/16”) in forestay length causes the masthead to move forward 16 mm (5/8”) on a 15400 mm (50’6”) forestay.
The decrease in length can also be compensated for by an increase in stay tension of 5% of the wire’s break-ing load compared with before. (However, permanent tension must not exceed 20% of the breaking load of the wire.) If this reduction in wire length is unacceptable, the total decrease can be made equal to a toggle length. The reduced measurement is compensated for by fitting an eye/fork toggle (see Table 3.3.3).

The luff extrusion and possibly the sail also should be shortened accordingly.

17.7 Luff extrusion system

For a better understanding of the following instructions, we recommend that you first read the section on assembly on Chapter 4.1.

1. Make sure that the luff extrusions are straight and placed on a flat surface.
2. Slide the wedge over the core of the wire again.
3. Push out the locking pin at the lower end of the 800 mm (31 ½”)/770 mm (30 5/16”) luff extrusion.
4. Hold the luff extrusion firmly and pull the wire’s eye terminal. This will bring the forestay, joint sleeves and distance tubes out together, enabling the extrusions to be separated.

If, due to contamination or damage this method fails the connection parts protruding boss’ can be drilled out. Use a Ø 6 mm drill bit for 200 TD, Ø 8 mm for 300 TD.
Reassembly of the luff extrusion.

1. Check all metal corners, edges and holes for damage, and file down if necessary.
2. Clean the wire and all extrusion parts with fresh water.
3. Insert the wire with distance tubes and joint sleeves from the top.
4. As the forestay progresses down, reassemble the connection parts at each join in turn.
5. Push the locking pin in the 800 mm (31 ½”)/770 mm (30 5/16”) extrusion back. Use locking adhesive.
18 Trouble shooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable cause</th>
<th>Action</th>
</tr>
</thead>
</table>
| **18.1** "The sail will not unfurl or will only partly unfurl." | • The jib halyard is wrapped around the luff extrusion.
 • Another halyard is wrapped around the luff extrusion.
 • The furling line is not free to run or has become tangled.
 • The forestay is too slack.
 • Dirt and salt in the bearings.
 • Too much strain on the halyard. | • Ease the halyard slightly and try to reverse the system. Refer to the Assembly and Operating manual, Chapter 5 & 10, "Halyard routing".
 • Furl the system. Free the halyard.
 • Slacken or free the furling line.
 • Tension the forestay, first of all by tensioning the backstay adjuster or backstays. If this doesn’t help, decrease the length of the Furlex system. Refer to the Operating manual, Chapter 14, "Adjusting the forestay length".
 • Rinse the bearings with fresh water and lubricate with Furlex grease.
 • Ease the halyard off. |
| **18.2** "The sail will not furl, is hard to furl or can only be partly furled" | • The jib halyard is wrapped around the luff extrusion.
 • Another halyard is wrapped around the luff extrusion.
 • There is no line left on the drum.
 • The forestay is too slack.
 • Excessive wind pressure on the sail.
 • Windward sheet is not released.
 • The sheet has become tangled.
 • The free turn is not functioning.
 • Large turning angles in the furling line route which increase friction.
 • Dirt and salt in the bearings.
 • The furling line has become tangled on the drum.
 • The line guide fitting chafes against the drum.
 • The halyard swivel is upside down.
 • Too much strain on the halyard. | • Ease the halyard slightly and try to reverse the system. Refer to the Assembly and Operating manual, Chapter 5 & 10, "Halyard routing".
 • Unfurl the system. Free the halyard.
 • Unfurl the sail. Take it down and wind more line on the drum. Alternatively, loosen the sheet, gather the sail around the system with a rope, wind more line on the drum.
 • Increase forestay tension.
 • Let the leeward sheet off more.
 • Release the sheet.
 • Sort out the sheet.
 • Rinse the bearings with fresh water and lubricate with Furlex grease. (look even att 18.9)
 • Reroute the furling line, avoiding large turning angles.
 • Rinse the bearings with fresh water and lubricate with Furlex grease.
 • Unfurl the sail and take it down. Rewind the furling line. Unfurl with slight drag on the furling line in future and avoid having too much line on the drum.
 • Loosen the fastening screw below the drum and adjust the fitting.
 • Fit the halyard swivel correctly.
 • Ease the halyard off a little. |
<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.3 “The system ‘wobbles’ when furling and unfurling”</td>
<td>• The forestay is too loose.</td>
<td>• The forestay is too loose.</td>
</tr>
<tr>
<td>18.4 “The sail unfurls after reefing or furling”</td>
<td>• The sail is not furled tightly enough.</td>
<td>• Furl with some drag on the line.</td>
</tr>
<tr>
<td></td>
<td>• The furling line is not belayed.</td>
<td>• Furl and belay the furling line.</td>
</tr>
<tr>
<td>18.5 “The sail is hard to hoist”</td>
<td>• The luff tape is too thick.</td>
<td>• Return the sail to the sailmaker and refer to Furlex manual, chapter 7.1.1 “Table of sail measurements”.</td>
</tr>
<tr>
<td></td>
<td>• The sail is caught on something or is not sufficiently loose on the foredeck.</td>
<td>• Arrange the sail better on the foredeck.</td>
</tr>
<tr>
<td></td>
<td>• Fault in halyard routing.</td>
<td>• Check the sheaves, winch etc.</td>
</tr>
<tr>
<td></td>
<td>• Dirt and salt in the luff groove.</td>
<td>• Clean the luff groove.</td>
</tr>
<tr>
<td>18.6 “The luff cannot be tensioned”</td>
<td>• The halyard swivel comes into contact with the top guard.</td>
<td>• The luff of the sail is too long. Have the sail shortened by the sailmaker.</td>
</tr>
<tr>
<td></td>
<td>• The angle between the forestay and the halyard is too great.</td>
<td>• Shorten the sail or move the halyard lead up.</td>
</tr>
<tr>
<td>18.7 “The sail cannot be taken down”</td>
<td>• The halyard is wrapped around the top of the luff extrusion.</td>
<td>• Ease the halyard off and try to reverse the system. Refer to the Assembly and Operating Manual, Chapter 5 & 10 “Halyard routing”.</td>
</tr>
<tr>
<td></td>
<td>• The halyard wraps around the luff extrusion as the sail is coming down.</td>
<td>• Tension the halyard manually keeping a slight drag on it while taking the sail down.</td>
</tr>
<tr>
<td></td>
<td>• The halyard is stuck.</td>
<td>• Check the halyard routing (sheaves, stoppers etc)</td>
</tr>
<tr>
<td>18.8 “The sail’s UV protection is on the inside of the furled sail”</td>
<td>• The furling line is wound on the drum in the wrong direction.</td>
<td>• Remove the sheet from the sail and gather the sail around the Furlex system with a rope. Pull on the line until the drum is empty. Wind a couple of turns on the drum by hand in the right direction. Unfurl the sail. Furl again, checking the number of turns of furling line on the drum.</td>
</tr>
<tr>
<td>18.9 “The sail is wrinkled at the tack”</td>
<td>• The tack ring was twisted in the wrong direction before tacking the sail.</td>
<td>• Unfurl the sail and ease off the halyard. Undo the tack snap shackle. Rotate the tack ring “around the system” and retack the sail. Furl slowly and check that the furling of the tack is retarded by one revolution in relation to the luff extrusion.</td>
</tr>
<tr>
<td></td>
<td>• The sail is old or incorrectly cut.</td>
<td>• Consult your sailmaker.</td>
</tr>
<tr>
<td>18.10 “The leach flogs despite sheeting hard”</td>
<td>• Incorrect sheeting point.</td>
<td>• Move the sheeting point forward.</td>
</tr>
<tr>
<td></td>
<td>• Incorrectly tensioned leach line.</td>
<td>• Adjust the leach line (Consult your sailmaker).</td>
</tr>
<tr>
<td></td>
<td>• The sail is old or incorrectly cut.</td>
<td>• Consult your sailmaker.</td>
</tr>
<tr>
<td>18.11 “The leach closes (bends inwards)”</td>
<td>• Incorrect sheeting point.</td>
<td>• Move the sheeting point backwards.</td>
</tr>
<tr>
<td></td>
<td>• The sail is old or incorrectly cut.</td>
<td>• Consult your sailmaker.</td>
</tr>
</tbody>
</table>
19 Checklist

Go through the checklist below and make sure that all the important instructions have been carried out. This will ensure that the Furlex system functions safely and reliably under all conditions.

<table>
<thead>
<tr>
<th>19.1 Points to check before sailing</th>
<th>See Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Check that the angle between the halyard and forestay is 5–10° when the sail is hoisted.</td>
<td>5</td>
</tr>
<tr>
<td>☐ Check that the clearance between the halyard swivel and the top guard is not less than 50 mm.</td>
<td>7.1</td>
</tr>
<tr>
<td>☐ Do all the sails used have the maximum luff length or an extension pendant?</td>
<td>7.1</td>
</tr>
<tr>
<td>☐ Check that no halyard can get caught in the halyard swivel or wrapped around the luff extrusion.</td>
<td>5.3</td>
</tr>
<tr>
<td>☐ Check that the line guide eye does not deflect the furling line too much, as this can cause extra friction and wear.</td>
<td>6.3</td>
</tr>
<tr>
<td>☐ Check that the free turn is functioning, i.e. the tack swivel is turned in the right direction. Some load on the sheet should cause the luff section to rotate one revolution before the tack rotates.</td>
<td>12.1</td>
</tr>
<tr>
<td>☐ Check that the tack ring does not touch the through deck fitting and causes extra friction.</td>
<td>4.2</td>
</tr>
<tr>
<td>☐ Check that the line guide fitting does not contact the line drum flanges.</td>
<td>4.3</td>
</tr>
<tr>
<td>☐ Check that the Furlex stay articulates freely at the upper and lower attachment.</td>
<td>3.1</td>
</tr>
<tr>
<td>☐ Check that all the split pins are secured.</td>
<td>3.3</td>
</tr>
</tbody>
</table>

We are sure that your Furlex will give you many years of enjoyment and wish you and your crew happy sailing.

 SELDÉN

www.seldenmast.com